A Tree Ortholog of APETALA1 Mediates Photoperiodic Control of Seasonal Growth

نویسندگان

  • Abdul Azeez
  • Pál Miskolczi
  • Szymon Tylewicz
  • Rishikesh P. Bhalerao
چکیده

BACKGROUND Photoperiodic control of development plays a key role in adaptation of plants to seasonal changes. A signaling module consisting of CONSTANS (CO) and FLOWERING LOCUS T (FT) mediates in photoperiodic control of a variety of developmental transitions (e.g., flowering, tuberization, and seasonal growth cessation in trees). How this conserved CO/FT module can mediate in the photoperiodic control of diverse unrelated developmental programs is poorly understood. RESULTS We show that Like-AP1 (LAP1), a tree ortholog of Arabidopsis floral meristem identity gene APETALA1 (AP1), mediates in photoperiodic control of seasonal growth cessation downstream of the CO/FT module in hybrid aspen. Using LAP1 overexpressors and RNAi-suppressed transgenic trees, we demonstrate that short day (SD)-mediated downregulation of LAP1 expression is required for growth cessation. In contrast with AP1 targets in flowering, LAP1 acts on AINTEGUMENTA-like 1 transcription factor, which is implicated in SD-mediated growth cessation. Intriguingly, unlike AP1 in Arabidopsis, ectopic expression of LAP1 fails to induce early flowering in hybrid aspen trees. CONCLUSIONS These results indicate that AP1 ortholog in trees has acquired a novel function in photoperiodic regulation of seasonal growth. Thus, photoperiodic signaling pathway may have diverged downstream of AP1/LAP1 rather than the CO/FT module during evolution. Moreover, control of flowering by the CO/FT module can be uncoupled from its role in photoperiodic control of seasonal growth in trees. Thus, our findings can explain mechanistically how a conserved signaling module can mediate in the control of a highly diverse set of developmental transitions by a similar input signal, namely photoperiod.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dual role of tree florigen activation complex component FD in photoperiodic growth control and adaptive response pathways.

A complex consisting of evolutionarily conserved FD, flowering locus T (FT) proteins is a regulator of floral transition. Intriguingly, FT orthologs are also implicated in developmental transitions distinct from flowering, such as photoperiodic control of bulbing in onions, potato tuberization, and growth cessation in trees. However, whether an FT-FD complex participates in these transitions an...

متن کامل

WAP1, a wheat APETALA1 homolog, plays a central role in the phase transition from vegetative to reproductive growth.

Heading time in bread wheat (Triticum aestivum L.) is determined by three characters: vernalization requirement, photoperiodic sensitivity and narrow-sense earliness, which are involved in the phase transition from vegetative to reproductive growth. We identified and characterized the APETALA1 (AP1)-like MADS box gene in wheat (WAP1) as an activator of phase transition. Its expression starts ju...

متن کامل

The Seasonal Length Growth of Wool at Pasture in the Merino, Polwarth and Their Reciprocal Crosses in Tasmania

After their inherent photoperiodic rhythm as hoggets had been measured in a 15 month penfed experiment, the wethers (sampled from 4 Merino and Polwarth based genotypes) were monitored for seasonal periodic staple length growth at pasture as adults. Samples of hoggets of similar breeding but different drops and years were also monitored. The seasonal staple length growth rhythm of the adult weth...

متن کامل

Circadian Clock and Photoperiodic Response in Arabidopsis: From Seasonal Flowering to Redox Homeostasis

Many of the developmental responses and behaviors in plants that occur throughout the year are controlled by photoperiod; among these, seasonal flowering is the most characterized. Molecular genetic and biochemical analyses have revealed the mechanisms by which plants sense changes in day length to regulate seasonal flowering. In Arabidopsis thaliana, induction of the expression of a florigen, ...

متن کامل

A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice.

Although some genes that encode sensory or regulatory elements for photoperiodic flowering are conserved between the long-day (LD) plant Arabidopsis thaliana and the short-day (SD) plant rice, the gene networks that control rice flowering, and particularly flowering under LD conditions, are not well understood. We show here that RICE FLOWERING LOCUS T 1 (RFT1), the closest homolog to Heading da...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2014